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Bread wheat is one of the major sources of calories and pro-
tein in the modern human diet. Its origin dates back to 8000 
bc1,2 and is attributed to a series of events that include: (1) the 

domestication of tetraploid wild emmer (Triticum dicoccoides) in 
the Fertile Crescent, which led to the origin of domesticated emmer 
wheat (T. dicoccum)3,4, and (2) hybridization between free-threshing 
domesticated emmer with diploid goatgrass (Aegilops tauschii) from 
the southwestern Caspian region5,6 to form hexaploid bread wheat 
(T. aestivum). Since its origin, bread wheat has spread across the 
world, reaching Europe around 6000 bc7 and China around 2600 
bc8. This dissemination required adaptation to new environmental 
conditions and agricultural practices quite distinct from those at the 
site of origin.

Wheat diversity has been affected by genetic bottlenecks caused 
by domestication and polyploidization9,10. A polyploidization-
related bottleneck resulted in substantial loss of genetic diversity 
in the D genome of hexaploid wheat compared with its diploid 
ancestor10. A possible explanation for the lack of similar diversity 
reduction in the A and B genomes is gene flow from tetraploid wild 
emmer through pentaploid hybrids that can be produced from 
crosses between hexaploid and tetraploid wheat11,12. A study of intro-
gression between sympatric populations of wild emmer and wheat 
at a single locus provides evidence for this hypothesis13. However, 
the scope of gene flow at the genome-wide level and its impact on 
adaptive evolution in wheat remained unexplored. The potential for 
adaptive introgression has been widely observed in plant popula-
tions14–18. Thus, identification of wild-relative introgression in the 

wheat genome can help to understand the role of ancestral diversity 
in defining the genetic diversity of modern wheat and evaluate its 
contribution to local adaptation.

Here, we used a reference wheat genome IWGSC RefSeq v.1.0 
(ref. 19) to generate a haplotype map on the basis of targeted re-
sequencing20 of 890 diverse wheat landraces and cultivars, and tet-
raploid wild and domesticated relatives to identify genomic regions 
showing the signals of introgression from wild emmer. By analyzing 
the distribution of SNPs relative to geography, historic environmen-
tal variables and improvement status, we sought to assess the contri-
bution of introgression to local adaptation and crop improvement, 
and to evaluate the effects of these factors on deleterious allele bur-
den in wheat. By partitioning genetic variance for major agronomic 
traits between the genomic regions with high and low incidence of 
introgression, we assessed the impact of historic gene flow on the 
phenotypic diversity of modern wheat.

Results
Population structure and genetic differentiation. The panel 
of geographically diverse wheat cultivars and landraces was re-
sequenced using the sequence capture assay20 (Fig.  1a,b and 
Supplementary Table  1), resulting in identification of about 7.3 
million SNPs. A total of 3,573,809 filtered SNPs with minor allele 
frequency (MAF) ≥ 0.002 and missing genotype calls <25% were 
used in the study. This included 375,079 (10.5%) non-synonymous 
(nSNPs) and 49,233 (1.4%) potentially deleterious SNPs (dSNPs) 
that can negatively affect plant fitness21,22 (Supplementary Table 2). 
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This SNP dataset was merged with the previously identified SNPs 
from wild and domesticated emmer23 resulting in 348,372 SNPs 
from the A and B genomes. In the combined dataset, wild emmer 
shared 226,677, 255,615 and 249,246 SNPs with domesticated 
emmer, wheat cultivars and landraces, respectively.

Genetic assignment analysis with ADMIXTURE24 in hexa-
ploid wheat showed an optimal value of K = 11 and high levels of 
interpopulation admixture consistent with previous findings25,26 
(Supplementary Note and Supplementary Fig.  1). To better illus-
trate admixture between domesticated and wild wheat, we per-
formed joint analysis of hexaploid and tetraploid wheat samples at 
K = 7, which separates wild and domesticated emmer from wheat 
and each other (Fig. 1a). At this value of K, on average, domesti-
cated emmer and wheat accessions had 21.9% and 0.6% of ancestry 
assigned to wild emmer, respectively. The extent of genetic dif-
ferentiation between wild emmer and wheat correlated negatively 
with the improvement status (landraces versus cultivars) (Fig. 1c). 
While this process might be largely driven by genetic drift and 
linked selection27, it can also be influenced by gene flow between 
sympatric populations; a possibility consistent with higher FST 
between allopatric than sympatric populations of wild emmer and 
wheat landraces (Fig. 1d). Likewise, the three-population f3 test28, 
using the populations of wild emmer (Fig.  1a) and wheat as the 
sources and landraces as the target, identified significant Z scores 
less than −4.0, supporting gene flow from wild emmer to wheat 
(Supplementary Table 3).

In agreement with previous studies25, we found that geographic 
proximity contributed more to genetic differentiation among the 
populations of landraces and cultivars than did improvement status 
(Supplementary Table 4 and Supplementary Fig. 2), suggesting that 
the local populations of landraces were broadly used to develop cul-
tivars adapted to each major geographic region.

Genome-wide patterns of introgression from wild emmer. Three 
previously defined wild emmer subpopulations (North, South 1 
and South 2 in Fig. 1a)3 were used as sources to detect introgres-
sion into wheat landraces and cultivars. Four-taxon fd statistic29 
(Fig.  2a), which estimates an excess of shared derived variants 
between two taxa, was calculated in 100-SNP windows across the 
A and B genomes of individual accessions as well as populations 
(Supplementary Tables 5–7). Introgressed regions were defined as 
the ninety-fifth percentile for outlier values of fd statistic. We found 
more extensive wild emmer gene flow (two-tailed t-test, t = 10.7, 
d.f. = 174,150, P ≤ 2.2 × 10−16) into landraces than cultivars (Fig. 2b 
and Supplementary Fig. 3), consistent with FST estimates (Fig. 1c). 
This conclusion was also validated by estimating the proportion of 
derived alleles shared only between wild emmer and wheat (referred 
to as derived wild emmer private (WEP) alleles in Supplementary 
Fig.  4). Consistent with the higher levels of gene flow from wild 
emmer, the proportion of WEP alleles was higher in landraces 
(two-tailed t-test, t = 7.7, d.f. = 518, P = 5.8 × 10−14) than in cultivars 
(Supplementary Fig. 4).
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Fig. 1 | Population structure and genetic differentiation of wild and domesticated emmer, and bread wheat. a, Population structure of wheat 
populations combined with wild (WE) and domesticated emmer (DE) was inferred by assuming seven clusters (K) to illustrate admixture between 
wild and domesticated wheat. At K = 3, wild emmer is separated into three subpopulations: North (Turkey, Iraq, Lebanon), South 1 (Central and 
Northern Israel) and South 2 (Southern Israel, Syria, Lebanon). b, Geographic distribution of wheat accessions by country of origin. Bubble sizes are 
proportional to the sample sizes. c,d, Box-plots were used to compare FST between populations in c and d. Box shows the median and interquartile 
ranges (IQR). The end of the top line is the maximum or the third quartile (Q) + 1.5× IQR. The end of the bottom line denotes either the minimum or 
the first Q − 1.5× IQR. The dots are either more than third Q + 1.5× IQR or less than first Q − 1.5× IQR. c, FST (2-Mb windows) among WE, DE, wheat 
cultivars (CL) and landraces (LR) (ANOVA F = 2,957, d.f. = 5, P = 10−16). Means are shown by circles. All comparisons were significant at adjusted  
P value × 10−6. d, Distribution of genetic differentiation estimates (FST) in 2-Mb windows between the sympatric and allopatric populations of wheat 
landraces and two wild emmer populations from the northern (Turkey) and southern (Israel, Syria) portions of the species’ range. Allopatric_1 includes 
landraces from Azerbaijan, Armenia and Georgia in the putative region of bread wheat origin in Transcaucasia. Allopatric_2 includes landraces from 
Turkmenistan and Uzbekistan.
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The frequency of introgression (FI) in a population can be 
affected by both the intensity of gene flow and selection acting 
on introgressed regions. The FI distribution indicates that most 
introgressed regions are rare in wheat, and that their frequency 
strongly correlates with the population-based fd (mean Spearman 
rank correlation coefficient rs = 0.61 ± 0.08) (Fig.  2c,d and 
Supplementary Table 5). An increase in FI was accompanied by 

an increase in the genetic diversity of the corresponding genomic 
regions in the wheat populations (Fig.  2e). No such diversity 
increase was observed for the same genomic regions in wild and 
domesticated emmer, suggesting that this trend in wheat is asso-
ciated with the introgression of wild emmer haplotypes rather 
than with the high levels of neutral variation in the correspond-
ing regions of a common ancestor. Consistent with the predicted 
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the first Q − 1.5× IQR. c, FI correlates positively with fd. d, Distribution of FI values in the entire wheat population. e, Relationship between FI in wheat and 
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effects of introgression15,30, the FI increase resulted in reduced 
genetic differentiation (FST) and divergence (dxy) between wheat 
and wild emmer, but not between wild and domesticated emmer 
(Fig. 2f and Supplementary Fig. 5).

To determine whether our fd statistic analyses were consistent 
with the previously detected signal of wild emmer introgression13, 
we examined the ABCT gene locus. The frequency of the ABCT-
A1b allele from wild emmer was found to be higher in the wheat 
accessions from Europe than from Eastern Asia13. Consistent with 
this expectation, the frequency of WEP alleles at the ABCT locus 
was higher in the populations from Turkey and Europe than in the 
populations from India and East Asia (Supplementary Fig. 6). Using 
three wild emmer source populations, we showed that gene flow 
into wheat around the ABCT locus was from the South 1 popula-
tion from central and northern Israel (Fig. 1a, Supplementary Fig. 6 
and Supplementary Table 6). The lower level of wheat–wild emmer 
genetic differentiation (FST = 0.35) at the ABCT locus, compared 
with the genome-wide estimate (FST(genome-wide) = 0.38), was also con-
sistent with the expected effect of introgression. An analysis of all 
of chromosome 4A in our wheat population showed that the ABCT 
locus is located within a large region of introgression from wild 
emmer, which in addition to showing reduced differentiation from 
wild emmer (FST = 0.32 versus FST(genome-wide) = 0.38) also has higher 
than average levels of genetic diversity in wheat (π = 0.33 versus 
πgenome-wide = 0.18). It is noteworthy that this region showed elevated 
FST between wild and domesticated emmer, and overlapped with a 
genomic region that was previously identified in a domestication 

selection scan23 (Fig. 2g). Contrary to findings in maize that show 
gene flow from wild relatives is limited around domestication 
genes31, we found evidence of introgression at the ABCT gene locus 
and domestication genes BTR1-A and BTR1-B23,32. No introgres-
sion was detected at domestication gene Q on chromosome 5A33 
(Supplementary Fig. 7).

The wild emmer source populations that contributed to gene 
flow differ across the wheat genome (Supplementary Table  6). It  
was lower in the A genome than in the B genome for WE North 
population (two-tailed Mann–Whitney U-test, sum of ranks 
(W) = 254,720, N = 1,417, P = 3.3 × 10−3), but it was higher in the 
A genome than the B genome for both WE South 1 (two-tailed 
Mann–Whitney U-test, W = 265,680, N = 1,417, P = 2.6 × 10−5) and  
South 2 (two-tailed Mann–Whitney U-test, W = 254,720, N = 1,417, 
P = 9.8 × 10−4) populations. If we define introgressed genomic  
regions (IGRs) as regions showing FI > 100 as a threshold, which is 
close to the FI value observed at the ABCT locus in landraces (Fig. 2g),  
on average, the IGRs would compose about 11.8% and 11.4% of 
genome per accession in landraces and cultivars (two-tailed t-test, 
t = 3.5, d.f. = 608.9, P = 4.8 × 10−4), respectively (Supplementary 
Fig.  8a,b and Supplementary Table  8). These results suggest that 
wheat experienced substantial levels of gene flow from its tetra-
ploid wild relative. Considering our full wheat panel, we found 
that the total length of the IGRs from each of the three wild emmer 
source populations varied among chromosomes, with the largest 
number of IGRs found on chromosomes 1A, 4A, 4B, 5A and 6A  
(Supplementary Fig. 8c).
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Patterns of introgression, selection and adaptive evolution. 
The spread of wheat from its center of origin in the Middle East 
to new geographic regions involved both agronomic and environ-
mental adaptation. To identify genomic regions associated with 
local adaptation, we used the environmental association approach 
implemented in the program Bayenv34 to study correlations between 
49 environmental and 19 bioclimatic variables and allele frequen-
cies in 26 wheat populations that were defined on the basis of 
geographic regions with relatively uniform climate (Figs. 3a,b and 
Supplementary Tables  1 and 9). By merging climate-associated 
SNPs located within 10 kilobases (kb) of each other, we have identi-
fied 43,670 genomic regions that, after extrapolating to the size of 
regions impacted by selection, cover about 988 megabases (Mb) of 
genome (Fig. 3c and Supplementary Table 10).

To identify genomic regions impacted by selection during 
improvement, we used the XP-CLR statistic35, which was calculated 
by comparing each of the nine large regional populations of culti-
vars (Supplementary Table 1) with the reference population of land-
races (Fig.  3d). We identified 4,316 genomic regions subjected to 
selection in at least one population (Supplementary Table 11) with 
the average size of the individual regions close to 100 kb (Fig. 3d). 
These genomic regions together span about 2.3 gigabases (Gb), 
indicating that improvement selection affected a substantial por-
tion of the 17-Gb wheat genome. Cross-population comparisons 
showed that most selective sweep regions (2,947) do not overlap, 
and only three genomic regions were shared among all nine popula-
tions used in the comparison (Fig. 3e). Taken together, these results 
suggest that during the development of locally adapted cultivars, 
selection targeted unique genomic regions probably associated with 
region-specific agroecological factors. This possibility is supported 
by the 31% overlap between the regions identified in the XP-CLR 
and Bayenv scans (Fig. 3f).

We evaluated the contribution of introgression from wild emmer 
to wheat improvement and local adaptation. Genomic regions tar-
geted by improvement selection overlapped with the 3,242 IGRs 
(20.4% of IGRs) (Fig. 3f,g and Supplementary Fig. 9). Nearly 8.0% 
of the Bayenv genomic windows associated with environmen-
tal adaptation overlapped with IGRs harboring 681 WEP alleles 
(Supplementary Fig. 4), suggesting that wild emmer gene flow may 
have contributed to local adaptation. A total of 809 IGRs (81 Mb) 
overlapped with the regions showing signatures of both environ-
mental adaptation and improvement selection (Supplementary Table  
12). Gene ontology terms enriched in the genomic regions over-
lapping among the introgression, XP-CLR and Bayenv scans were 
associated with biological processes targeted during crop improve-
ment and development of locally adapted cultivars36–39 (Fig.  3f, 
Supplementary Note and Supplementary Table 13).

Deleterious SNP alleles in the allopolyploid wheat genome. 
Deleterious alleles were shown to accumulate in genes that can 
affect complex phenotypic traits in maize, rice and barley21,22,40. To 
assess the effects of improvement selection, environmental adapta-
tion and gene flow from the wild ancestor on mutation burden, we 
studied the distribution of non-synonymous, synonymous and del-
eterious SNPs (nSNPs, sSNPs and dSNPs, respectively) across the 
wheat genomes and among the regions identified in the selection 
and introgression scans.

The site frequency spectrum (SFS) for sSNPs was similar in the 
A and B genomes and significantly different from that of dSNPs 
(Kolmogorov–Smirnov test: DAgenome = 0.45, P = 0.04; DBgenome = 0.5, 
P = 0.01; Fig.  4a). These patterns are consistent with the effect of 
purifying selection maintaining deleterious alleles at low frequency 
in both the A and B genomes of wheat. The SFS of dSNPs in the D 
genome was different from both the A and B genomes (Fig. 4a), but 
was not significantly different from the SFS of sSNPs in the D genome.  
The similarity of the SFS for dSNPs and sSNPs in the D genome 

is probably a result of reduced efficacy of selection and increased 
genetic drift owing to the genetic bottleneck caused by polyploidiza-
tion during the origin of bread wheat41.

The average number of dSNPs per line varied among the wheat 
genomes, with the A, B and D genomes harboring 481, 548 and 297 
dSNPs, respectively (Fig. 4b). However, the average dSNP/sSNP ratio 
was higher in the A genome (3.2 × 10−2) than in the B (2.5 × 10−2) 
and D (1.4 × 10−2) genomes (Fig. 4c). This trend was partly associ-
ated with a 33.6% lower level of sSNP diversity in the A genome 
compared with that in the B genome (Supplementary Table 2)20. One 
of the factors contributing to higher dSNP and sSNP diversity in 
the B genome can be larger effective population size and outcross-
ing mating behavior of a diploid ancestral species closely related 
to Aegilops speltoides42. The proportions of the genome subjected 
to domestication selection, which tends to increase dSNP load21, 
can also contribute to differences in dSNP enrichment between 
the A and B genomes. Consistent with this possibility, the size of 
selective sweep regions detected in domesticated emmer by using 
wild emmer23 as the reference population was significantly higher 
(permutation-based P = 0.001) in the A (1,237 windows covering 
61.9 Mb) than in the B genome (784 windows covering 39.2 Mb).

In wheat, we found a strong negative correlation (r2 = 0.44) 
between recombination rate and dSNP enrichment (Supplementary 
Fig.  10), consistent with findings made in other crops21,22,40. 
However, considering each genome separately, a strong correlation 
was found only in the A and B genomes, but not in the D genome 
(Fig. 4d and Supplementary Fig. 10)41. Although negative correla-
tion between recombination and dSNPs in the A and B genomes 
is consistent with the patterns observed in diploid plants22,40, and 
might suggest that polyploidy does not have an effect on dSNP load, 
we observed a tendency toward an increased number of dSNPs in 
genes duplicated due to polyploidy compared with that in single-
copy genes (Supplementary Note and Supplementary Table  14). 
This trend implies that polyploidy probably resulted in relaxation of 
purifying selection in wheat.

Our results indicate that both selection and gene flow were 
important factors that affected the distribution of dSNPs across the 
wheat genome. We found evidence for the significant reduction of 
dSNP enrichment in cultivars compared with landraces (Fig.  4e 
and Supplementary Table  15). The reduction of mutation load in 
the XP-CLR outlier regions was consistent across all populations of 
cultivars from different geographic regions (Fig. 4e). Similarly, SNPs 
showing a strong correlation with the bioclimatic variables (Fig. 4f,g 
and Supplementary Fig. 11), or located within the regions of intro-
gression, showed a significant reduction in deleterious mutation 
burden compared with other regions (Fig. 4h).

Effect of introgression on phenotypic variation. To evaluate the 
effects of gene flow, environmental adaptation and improvement 
selection on phenotypic variation, the diversity panel was pheno-
typed for grain filling period (GFP), harvest weight (HW), drought 
susceptibility index for harvest weight (HWS), heading date (HD) 
and plant height (PHT) traits. Among the trait-associated SNPs, 
17.1%, 73.5% and 6.4% were located within the regions identi-
fied by the XP-CLR, Bayenv and introgression scans, respectively 
(Supplementary Table 16 and Supplementary Figs. 12 and 13a), indi-
cating that some signals of environmental adaptation and improve-
ment selection could be associated with known genes controlling 
adaptive and agronomic traits in wheat. Overlap of genome-wide 
association study signals with introgression suggests that variation 
contributed by gene flow may play a role in broadening phenotypic 
variation (Fig. 5a, Supplementary Table 17 and Supplementary Fig.  
13a). At the loci controlling various agronomic traits, the aver-
age diversity in wheat lines showing no evidence of introgression 
(π = 6.46 × 10−4) was increased by 41.5% (π = 9.14 × 10−4) when lines 
with introgressions were included (Supplementary Table 17).
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Using previously published RNA-seq data43, we have evaluated 
the effect of introgression on the expression of duplicated homoeol-
ogous genes in the sequenced reference wheat cultivar Chinese 
Spring19. The proportion of genes showing an expression bias toward 
one of the three wheat genome homoeologs within the introgressed 
and non-introgressed genomic regions was mostly similar across 15 
different wheat tissues (Supplementary Note and Supplementary 
Tables  18 and 19). At the genome-wide level, introgressed alleles 
of genes appear to have the same likelihood of showing biased gene 
expression as genes located within the non-introgressed regions. 
This lack of extensive expression bias in the introgressed regions 
can be associated with the necessity to maintain the correct balance 
of proteins encoded by duplicated genomes44,45.

In addition, we have applied a variance-component method46 
to partition heritability for a range of traits using SNPs from the 
genomic regions with and without signals of wild emmer gene flow 
(Fig. 5b). SNPs private to wild emmer and wheat (WEP sites defined 
in Supplementary Fig. 4) and located within introgression were used 
to assess the contribution of wild emmer to trait variation in wheat. 
The genetic relationship matrices were constructed using WEP and 
non-WEP SNPs grouped into three sets on the basis of the derived 
allele frequency (DAF) in the population (Supplementary Table 20). 
For each DAF group, variance for each trait explained by SNPs within 
and outside introgression was estimated (Fig. 5b and Supplementary 
Fig. 13b). Compared with non-WEP SNPs, wild emmer SNPs with 
DAF < 0.1 explained most of the variation for harvest weight (up 
to 30.9%), drought susceptibility (up to 22.5%) and plant height 
(up to 35%). The proportion of variance explained by WEP SNPs 
with DAF ≥ 0.1 for the same traits was smaller compared with that 
explained by non-WEP SNPs. Overall, for SNPs with DAF < 0.1, 
the average proportion of phenotypic variance for all analyzed 
traits explained by WEP sites (18.7%) was close to that explained by  
non-WEP sites (21.8%) (Fig.  5b and Supplementary Fig.  13b).  

On average, the proportion of phenotypic variance explained by 
wild emmer SNPs declined with the increase in DAF.

Discussion
Our study reveals that the genome-wide SNP diversity in wheat 
was strongly influenced by gene flow from its tetraploid wild 
ancestor13. Regions of introgression in the wheat A and B genomes 
showed increased levels of genetic diversity and reduced genetic 
differentiation from wild emmer. Both patterns were consistent 
with wild-relative introgression into wheat, which offset the effects 
of polyploidization and domestication bottlenecks on diversity in 
these genomes10.

Introgression frequency tended to be relatively low in wheat pop-
ulations and was distributed non-uniformly among the genomes 
and chromosomes. In agreement with findings from previous stud-
ies, limited gene flow was found around the domestication-related 
genes, or regions showing evidence of a domestication-selective 
sweep23,31–33. However, while it appears that selection against intro-
gression around one of the primary domestication genes, Q, was 
not affected by the merger of the domesticated AB genome pro-
genitor with the wild D genome ancestor during the origin of bread 
wheat, some regions overlapping with the selective sweeps found 
in domesticated emmer23 or domestication genes23 showed evidence 
of introgression. It is possible that these regions did not contribute 
to domestication traits or that their contribution is modulated by 
the D genome, which would suggest a more complex domestication 
trait architecture in hexaploid wheat47,48.

Deleterious SNPs were postulated to have a negative effect on 
crop performance and their elimination was proposed as a possible 
breeding strategy49. Our results show that dSNP burden in wheat 
was reduced by gene flow, breeding and environmental adaptation. 
Selection associated with both environmental adaptation and wheat 
improvement appears to have been effective at purging deleterious 
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alleles from wheat populations. Although domestication and a 
founder event were shown to increase deleterious allele load in 
maize16, this effect was mostly associated with a genetic bottleneck 
rather than with linkage to positively selected alleles. The lack of 
a strong bottleneck during the transition from landraces to culti-
vars in wheat25 probably facilitated effective selection against del-
eterious alleles. Gene flow further reduced mutation load, a trend 
that was also observed in maize and teosinte16,31, and was possibly 
linked with a larger effective population size of wild emmer capable 
of effective removal of deleterious alleles.

Deleterious effects of mutations can potentially be masked in 
polyploids such as wheat20,50, which is consistent with our find-
ing that single-copy genes tend to carry fewer dSNPs than genes 
duplicated due to polyploidy. However, in spite of polyploidy, the  

frequency and patterns of dSNP distribution in the A and B 
genomes were similar to those observed in diploid crops21,22. Most 
dSNPs were rare, and dSNP density in the A and B genomes is cor-
related negatively with recombination, consistent with the effective 
removal of deleterious alleles in the highly recombining regions.  
A severe polyploidization bottleneck in the D genome accompany-
ing the origin of wheat appears to have increased genetic drift and 
reduced the efficiency of selection against dSNPs in the high recom-
bining regions21,41. A similar uncoupling between recombination 
and dSNP load was found in cassava and is attributed to decreased 
efficiency of selection due to clonal propagation51. Our results indi-
cate that the effects of dSNPs in wheat are only partially masked by 
polyploidy and sufficiently large to be selected against. Increased 
hybrid wheat performance shown in recent studies52 is consistent 
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with this possibility, suggesting that, in addition to polyploidy, the 
negative effects of dSNPs can be reduced in the heterozygous state. 
Thus, the effects of purifying selection on deleterious mutations 
are evident not only in paleopolyploid plants, where the strength of 
selection acting on retained duplicates and their single-copy ortho-
logs in diploids53 was similar, but also in young polyploids.

The overlap between the signals of gene flow, genome-wide 
association studies, improvement and environmental adaptation  
is suggestive of adaptive introgression. Using the variance-com-
ponent method46 we show that introgression contributed to wheat 
phenotypic diversity for HW, PHT, GFP and HD traits. Less com-
mon alleles (DAF < 0.1) introduced from wild emmer explained a 
substantial proportion of phenotypic variance for harvest weight 
(up to 30.9%), drought susceptibility (up to 22.5%) and plant height 
(up to 35%) traits. The proportion of phenotypic variance explained 
by introgressed variants declined with an increase in population 
frequency, suggestive of either negative selection against introgres-
sion allowing only small-effect-size alleles to reach high frequency 
in population, or introgression being adaptive only in specific geo-
graphically constrained habitats.

Our results provide evidence that historic gene flow from wild 
emmer played an important role in shaping the agronomic pheno-
types in modern wheat and probably broadened its adaptive potential. 
These findings have important implications for the future of wheat 
breeding. A detailed map of genome-wide introgression developed in 
our study can guide targeted deployment of wild-relative diversity in 
wheat-breeding programs. These efforts, besides introducing novel 
adaptive alleles into cultivars and broadening phenotypic diversity 
available for selection, hold great potential to reduce the deleterious 
mutation burden in the wheat genome, further accelerating breeding.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
Wheat accessions. The exome-sequenced hexaploid wheat accessions were selected 
from a worldwide population of landraces and cultivars obtained from the USDA 
National Small Grains Collection and the Australian Grains Genebank (formerly the  
Australian Winter Cereal Collection). The panel included 3,990 accessions from 106 
countries that were genotyped using the 90K iSelect assay26. The MCG method54 was 
used to select accessions for exome sequencing. This method uses a genetic relation-
ship matrix calculated from genotype data to iteratively chose an arbitrary number of 
accessions (in the case of this study 20% of the accessions) that collectively explain the 
largest proportion of variance in genetic relationships among the whole set.

DNA extraction and sequence capture. Genomic DNA was extracted from leaf 
tissue for each accession using the Agencourt DNAdvance Genomic DNA Isolation 
Kit (Beckman Coulter) and subjected to sequence capture using the NimbleGen 
SeqCap EZ wheat whole-genome assay20. In brief, 1 µg of DNA was fragmented with 
the Covaris S2 instrument to obtain an average fragment length of 300 bp. Shorter 
fragments were removed using Agencourt AMPure XP beads (Beckman Coulter). 
The KAPA Library Preparation Kit (Kapa Biosystems) and adapters supplied in the 
NimbleGen SeqCap EZ Reagent Kit Plus v2 (Roche) were used to prepare libraries 
for the capture assay, according to the KAPA protocol (excluding steps 8.1–8.22). 
The quality and yield of each sample library were assessed using an Agilent 2200 
TapeStation (Agilent Technologies), and sequence capture was then performed 
according to the Roche protocol. Each library was sequenced on an Illumina 
HiSeq2000 instrument (Illumina) to generate about 30 million reads per accession.

SNP calling. GYDLE (GYDLE Inc.) software was used to quality filter the raw 
sequence reads (phred score ≥ 20; read length ≥ 50 bp) and align them to sequences 
used in the exome capture design20. These on-target reads were then realigned to 
the IWGSC RefSeq v.1.0 (ref. 19) using GYDLE that conducts exhaustive search 
to detect uniquely mapped reads. Because the level of divergence among wheat 
homoeologs is 1–2%, consistent assignment to the correct wheat genome was 
possible for nearly all reads. Multi-mapping reads as well as genomic regions 
showing high depth of read coverage were excluded. SNP discovery and genotype 
calling were performed using the ‘find snp’ function of GYDLE.

SNP imputation and filtering. The Beagle program (beagle.21Jan17.6cc.jar) 
was used for SNP imputation with the following parameters: ‘overlap = 500, 
window = 5,000, ne = 12,000’ (ref. 55). The effective population size was based on 
the previous estimates56. The accuracy for imputation was estimated to be higher 
than 90% in both GT and GL modes.

Genotype calls with a genotype probability less than 0.8 were set as missing 
data. Sites with > 75% missing data and > 3% heterozygote calls were removed. 
For Bayenv and XP-CLR analyses, we used 1.39 million SNPs spaced at least 100 bp 
apart from each other (thinned using PLINK, --bp-space 100) and MAF > 0.01 
in the wheat landraces and cultivars. The VCF file can be downloaded at (http://
wheatgenomics.plantpath.ksu.edu/1000EC).

The 90K Infinium iSelect SNP array26 was used to evaluate the SNP genotyping 
error rate of SNP from the exome capture. The flanking sequences of SNP on the 
90K array were aligned to IWGSC RefSeq v.1.0 using the following parameters: 
‘coverage > 95%, identity > 97%, e-value < 1 × 10−10’. SNPs with multiple mapped 
locations were removed. Among the 23,577 90K SNPs mapped to the reference 
genome, ~10,000 were shared between the 90K array and the exome capture data. 
Concordance rate between the 90K and exome capture genotype calls was >0.98, 
suggesting that the exome capture and imputation procedures applied in our study 
generated high quality SNP data.

Merging with published emmer wheat SNP data. To analyze introgression 
between wild emmer and hexaploid wheat, our data were merged with the recently 
published SNP dataset for wild and domesticated emmer23. For each emmer SNP, 
the flanking sequences of 200 bp on the emmer reference genome were aligned to 
the IWGSC RefSeq v.1.0 genome using BLAT. The following parameters were used 
to define a blat hit, ‘alignment coverage > 95%, identities > 97%, e-value < 1 × 10−10’. 
A total of 1.26 million published emmer wheat SNPs have been uniquely mapped 
to the IWGSC RefSeq v.1.0 genome19. A total of 348,372 merged SNPs that were 
also polymorphic in our dataset were used for further analyses. The merged VCF 
file can be downloaded at (http://wheatgenomics.plantpath.ksu.edu/1000EC).

Using generated SNP data, all accessions were clustered using the phylo program 
from the VCF-kit (https://vcf-kit.readthedocs.io/en/latest/). On the basis of the 
patterns of clustering inconsistent with the clustering of wheat accessions having the 
same improvement status (wild, domesticated, landrace, cultivar), we have removed 
from analyses three wheat landraces (PI 345355, PI 131592, PI 534284) and two 
accessions of wild and domesticated emmer (PI 467000, PI 415152).

Inference of ancestral allelic states at SNP sites. We assessed the probability 
of ancestral versus derived allelic states using the maximum likelihood method 
described in ref. 57, which permits the use of multiple outgroup species. For 
inferring ancestral states of SNPs in the A and B genomes we have used Aegilops 
tauschii58, D genome of hexaploid wheat19, Triticum urartu59, Triticum monococcum, 
Aegilops sharonensis, A. speltoides, Thinopyrum elongatum and Hordeum vulgare60 

as outgroups. Sequences were obtained from public databases: URGI (https://
wheat-urgi.versailles.inra.fr/), Ensembl Plant (plants.ensembl.org), and NCBI. 
In addition, intergenomic comparisons of homoeologous genes were used to 
supplement these analyses; for example, sequences of genes from the A genome 
of wheat and wild emmer can be used as an outgroup to infer ancestral states in 
the B genome, and vice versa. Taken together, these species span a broad range of 
divergence from the wheat A and B genomes, and provide a powerful framework 
for the accurate assessment of the ancestral allelic states. The ancestral states were 
inferred for 213,528 SNP sites (Supplementary Table 7 and Supplementary Note).

SNP annotation and genetic load. The SNPeff program was used to annotate 
SNPs61 using both high (‘HC’) and low (‘LC’) quality gene models from the IWGSC 
RefSeq v.1.0 genome19. SNPs with the high impact (stop_gain/lost, start_gain/lost, 
splice_donor/acceptor_variant) were considered deleterious. The dSNP/sSNP and 
nSNP/sSNP ratios were used to assess the enrichment of dSNPs and nSNPs relative 
to neutral background. A total of 346,146 sSNPs, 15,895 dSNPs and 390,661 nSNPs 
were used in the analyses.

Population structure and diversity statistics. The ADMIXTURE program was 
used for genetic assignment24 using a subset of 17,656 SNPs. This subset was 
selected by applying the following criteria: (1) SNPs with linkage disequilibrium 
(LD) above 0.4 were removed using Plink ‘--indep-pairwise 1000 10 0.4’, and (2) 
SNPs with MAF ≥ 0.001 and located more than 1,000 bp apart were retained. Ten 
independent runs of ADMIXTURE with different random seeds were performed 
and summarized using CLUMPP62. The R package pophelper was used to generate 
the ancestry barplots.

We used PLINK1.9 and VCFtools v0.1.16 for the calculation of principal 
components, and other basic diversity statistics. A sliding window analyses of 
genetic differentiation (FST), divergence (dxy) and SNP diversity (π) were performed 
using ABBABABAwindows.py (https://github.com/simonhmartin/genomics_
general)29. This script uses only variable sites for calculating the diversity statistics.

Detection of selective sweeps by XP-CLR. The XP-CLR statistic35 was used 
to identify selective sweeps associated with modern wheat improvement. A 
population of wheat landraces from Eurasia was used as reference in comparison 
with nine test populations of cultivars from nine geographic areas (defined 
in Supplementary Table 1). For analysis, the genetic location of each SNP was 
interpolated using the R function ‘approx’ (method = ‘linear’, rule = 1). XP-CLR 
was run with the grid size of 50 kb, the window size of 1 cM, the maximum number 
of SNPs within a window of 200 and the correlation levels as 0.95. We considered 
the top 1% outliers of chromosome-level test statistic from each population as the 
genomic segments under selective sweep.

Detecting local adaptation using BAYENV. Association between local 
environment and SNP frequency was identified using BAYENV 2.0 (ref. 34). 
Data for 49 environmental and 19 bioclimatic variables were obtained from the 
WorldClim database (http://www.worldclim.org/) for 26 wheat populations 
defined on the basis of geography (Supplementary Table 1). To control for 
population structure, a randomly selected set of 20,000 SNPs was used to estimate 
the covariance matrix with 1,000,000 iterations. The association between the 1.39 
million SNPs and the 68 environmental and bioclimatic variables was tested using 
1,000,000 iterations for each SNP. The median value of the Bayes factor calculated 
for each SNP using data from ten independent Bayenv runs. Top 1% cutoff value of 
the median Bayes factor was used to select locally adaptive SNPs for each of the 68 
environmental variables. In total, about 78,000 SNPs were associated with at least 
one environmental or bioclimatic variable. SNPs located within a 10 kb region were 
merged to estimate the overlap among genomic regions detected by the XP-CLR, 
Bayenv and introgression scans.

Detection of introgression from wild emmer. A four-taxon fd statistic was used 
to identify the genomic segments introgressed from wild emmer wheat29. Multiple 
outgroup species (O) were used to infer the ancestral (A) and derived (B) SNP allelic 
states in the populations of wild emmer (WE or P3), domesticated emmer (DE or  
P1), wheat cultivars (CL or P2) and landraces (LR or P2). Inference of ancestral state 
is described above. Three previously identified3 WE source populations were used as 
P3: North, South 1, and South 2 (defined in Fig. 1a). Without gene flow, the ABBA 
and BABA allele configurations in the four-taxa tree (((P1, P2),P3),O), should be 
equally frequent; gene flow between WE and CL or LR would result in an excess of 
ABBA relative to BABA that can be detected using the fd statistic29. The fd statistic  
was calculated in sliding windows of 100 SNPs with a step of 50 SNPs. Windows  
with less than three informative SNPs (neither ‘ABBA’ nor ‘BABA’) were ignored. 
Windows with negative values of Patterson’s D statistic63 (closely related to the fd 
statistic) and fd > 1 were ignored. For analyses of introgression, we used a set of 35 
accessions of DE and 33 accessions of WE from our previously published study23.

The fd statistic for 4,264 genomic windows was calculated for both individual 
accessions and populations. Three sets of fd estimates were obtained using three 
WE source populations. Within each set, the ninety-fifth percentile outliers of fd 
distribution were used to detect regions introgressed from wild emmer. The ninety-
fifth percentile fd thresholds for datasets generated using WE source populations 
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North, South 1 and South 2 were 0.91, 0.78 and 0.47, respectively. The FI within 
each genomic region in wheat population was estimated by counting overlapping 
introgressed regions among accessions. To define the IGRs in populations, we have 
used the FI > 100, which is close to FI at the previously identified introgression 
around the ABCT gene locus on chromosome 4A13 (genomic window used on 
chromosome 4A span region 174,725,311–185,745,837 bp). The proportion of 
IGRs in a single accession was estimated by summing up all regions defined as 
IGRs at the population level.

To compare overlap among the genomic regions identified by the XP-CLR, 
Bayenv and fd analyses, test statistics values obtained using each method were 
assigned to 100-kb non-overlapping genomic windows. The bedmap tool64 was 
used to find the overlap between the datasets.

Gene ontology analysis. In addition to gene ontology data released with the 
IWGSC RefSeq v.1.0 genome19, we used blast2go65 to generate detailed functional 
annotations of both HC and LC gene sets from the reference genome. The RefSeq 
v.1.0 genome annotation was combined with our blast2go analyses resulting in 
142,346 gene ontology-annotated genes. Fisher’s exact test was used to determine 
the significance of the enrichment for every gene ontology term, followed by the 
Benjamini–Hochberg correction66. A list of gene ontology terms with adjusted 
P < 0.005 was obtained for genes located within the regions identified by the XP-
CLR, Bayenv and fd statistic methods. For the gene ontology enrichment analyses, 
the selective sweep regions identified in all nine regional populations (top 1% XP-
CLR outliers) were combined into a non-redundant set. For gene ontology analyses 
of genomic regions identified by Bayenv, we used genes that were closest to the top 
1% SNPs associated with the environmental variables. This list of gene ontology 
terms was submitted to Revigo67 to generate summaries.

Field trials and phenotypic observations. Field trials were conducted for two 
consecutive years under rainfed and irrigated conditions at the Agriculture 
Victoria departmental research station located at Horsham, Victoria, Australia. 
Horsham is located in a medium rainfall zone, with average annual rainfall 
of 400 mm and a temperate climate. Locations of field trials: (1) rainfed trial 
2014: latitude 36° 45' 3.97'' S, longitude 142° 6' 57.51'' E; (2) irrigated trial 2014: 
latitude 36° 44' 38.29'' S, longitude 142° 6' 12.40'' E; (3) rainfed trial 2015: latitude 
36° 44' 14.77'' S, longitude 142° 6' 50.79'' E; (4) irrigated trial 2015: latitude 
36° 44' 26.36'' S, longitude 142° 6' 6.17'' E. Each wheat accession was sown in 
triplicated 4.5 m single rows in a randomized block design in each of the rainfed 
and irrigated trials, with a seed-to-seed density of 3.6 cm and row-to-row spacing 
of 65 cm. The trials were managed using best practice for weed and disease 
control. Heading date was recorded as the date on which 50% of the heads in the 
experimental row had fully emerged from the culms. Physiological maturity was 
the date on which 95% of the plants in the plot had senesced. Plant height was 
measured from the ground to the tip of the spike (excluding awns).

The estimated means (best linear unbiased estimates) were obtained using a 
model with fixed genotype effects and all other effects as random in an individual 
year. The traits were analyzed separately for each year and environment. The trait 
values from the rainfed (RF) and irrigated (I) trials were used to calculate the stress 
susceptibility index (SSI)68. For each trait, the year and environment were added as a 
suffix to the trait name. Descriptions for the traits included for analysis are: days to 
heading in 2014 (HD14_I); days to heading in 2015 (HD15_I); plant height in 2014 
(PHT14_I); plant height in 2015 (PHT15_I); grain filling period in 2014 (GFP14_I); 
grain filling period in 2015 (GFP15_I); harvest weight of grain in 2014 (HW14_I); 
harvest weight of grain in 2015 (HW15_I); SSI for harvest weight in 2014 (HW14_S); 
and SSI for harvest weight in 2015 (HW14_S). For the latter, the higher the SSI value 
the lower the tolerance of the accession to the stress. Accessions that have an SSI 
value close to zero perform equally well in both the rainfed and irrigated trials.

The stress susceptibility index/drought susceptibility index was calculated 
according to ref. 68 using the formula SSI = (1 − TRF/TIR)/1 − (µRF/µIR), where 
TRF is the trait value under rainfed conditions, TIR is the trait value under 
irrigated conditions, µRF is the mean of the trait across all genotypes under rainfed 
conditions and µIR the mean of the trait across all genotypes under irrigated 
conditions.

Estimation of the proportion of phenotypic variance explained by 
introgression. Genome-wide association mapping was performed using the mixed 
linear model implemented in GCTA69. A total of 2.5 million SNPs with MAF > 0.01 
were tested for marker-trait association using best linear unbiased estimates 
for each trait. The first three principal components were used for controlling 
the population structure. For estimating kinship coefficients and principal 
componenet analysis, we used a set of 233,059 SNPs selected using the following 
criteria: MAF > 0.01, LD (r2) < 0.8 (plink --indep-pairwise, window size = 10 Mb, 
step = 10 SNP sites), and keep at most 1 SNP within 1,000 bp. The models’ type I 
error (false positive) rate was estimated using a random set of 10,000 genome-wide 
distributed SNPs by plotting observed and expected P values (Supplementary Note 
and Supplementary Fig. 12).

The GCTA-GREML method69 was used to partition the phenotypic variation 
for a range of traits into components explained by SNPs from the introgressed and 
non-introgressed genomic regions. For the regions of introgression we have selected 
11,032 WEP sites (MAF > 0.01) that are private to wild emmer when compared 
with domesticated emmer (defined in Supplementary Fig. 4). A total of 58,795 
non-WEP SNPs (MAF > 0.01) from the regions without the signals of wild emmer 
gene flow were used as control. To account for the effect of allele frequency on the 
estimates of heritability, we have grouped WEP and non-WEP SNPs into three 
classes depending on the frequency of the derived allele (DAF): 0.01–0.1, 0.1–0.3, 
>0.3 (Supplementary Table 20). Within each frequency class, we have estimated the 
proportion of genetic variation for different traits explained by WEP and non-WEP 
SNPs. For each DAF class, WEP and non-WEP SNPs were used to build two genetic 
relationship matrices using the following parameter, ‘make-grm-inbred, autosome-
num 30’. Then, the phenotypic variance for each phenotype explained by these 
two SNP sets was estimated using ‘mgrm’. Because the number of non-WEP SNPs 
was greater than the number of WEP SNPs, the variance partitioning was repeated 
100 times, each time randomly sampling the same number of non-WEP SNPs as 
the number of WEP SNPs. The proportions of phenotypic variance for each trait, 
V(G)/V(p), were extracted from each of the 100 calculations.

Statistical tests. Analysis of variance (ANOVA) tests followed by Tukey’s test were 
performed to compare window-based FST estimates among populations. Fisher’s 
exact test was used to determine the significance of the enrichment for every gene 
ontology term, followed by the Benjamini–Hochberg correction. Comparison 
between two group means was performed using two-tailed t-test and two-tailed 
Mann–Whitney U-test. The SFS for SNPs was compared using the Kolmogorov–
Smirnov test.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data have been deposited in the European Variation Archive (EVA) under project 
PRJEB31218 and NCBI SRA under project PRJNA517692, and are available for 
viewing and download from http://wheatgenomics.plantpath.ksu.edu/1000EC.
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Timing and spatial scale Not applicable

Data exclusions Using generated SNP data, all accessions were clustered using the phylo program from the VCF-kit. Based on the patterns of 
clustering inconsistent with the clustering of wheat accessions having the same improvement status (wild, domesticated, landrace, 
cultivar), we have removed from analyses three wheat landraces (PI 345355, PI 131592, PI 534284), and two accessions of wild and 
domesticated emmer (PI 467000, PI415152).

Reproducibility Not directly applicable to our study. The study focused on characterizing existing patterns of genetic diversity to detect targets of 
selection and evidence of gene flow.

Randomization Field trials were conducted for two consecutive years under rainfed and irrigated conditions at the Agriculture Victoria departmental 
research station located at Horsham, Victoria, Australia. Each wheat accession was sown in triplicated 4.5 m single rows in a 
randomized block design in each of the rainfed and irrigated trials, with a seed-to-seed density of 3.6 cm and row-to-row spacing of 
65 cm. 

Blinding Not applicable. Our study is not focused on detecting the outcome of biological process but rather on characterizing the existing 
patterns of genetic diversity. 

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Field trials were conducted for two consecutive years under rainfed and irrigated conditions at the Agriculture Victoria 

departmental research station located at Horsham, Victoria, Australia. Horsham is located in a medium rainfall zone, with 
average annual rainfall of 400 mm and a temperate climate.

Location Locations of field trials: 1) rainfed trial 2014: latitude- 36°45'3.97"S, longitude- 142° 6'57.51"E; 2) irrigated trial 2014: latitude- 
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Location 36°44'38.29"S, longitude- 142° 6'12.40"E; 3) rainfed trial 2015: latitude- 36°44'14.77"S, longitude- 142° 6'50.79"E; 4) irrigated 
trial 2015: latitude- 36°44'26.36"S, longitude- 142° 6'6.17"E.

Access and import/export Not applicable

Disturbance Not applicable

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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